Caring for Patients with Common Health Problems of the Endocrine System

Module D

Classroom Objectives

- Review the functions and hormones secreted by each of the endocrine glands
- Identify the diagnostic tests used to determine alterations in function of the endocrine glands
- Outline the teaching needs of patients requiring hormone and steroid therapy
- Discuss the relationship of the endocrine system and the nervous system as they control homeostasis
- Discuss the pharmacological and nursing implications of hormonal and steroid therapy

Objectives Continued

- Describe etiologic factors associated with diabetes
- Relate the clinical manifestations of diabetes to the associated pathophysiological alterations
- Describe the relationship between diet, exercise, and medication for people with diabetes
- Describe management strategies for a person with diabetes to use during sick days
- Describe the major macrovascular, microvascular, and neuropathic complications of diabetes and self-care behaviors important in their prevention

Endocrine Glands

- Controls many body functions
 - exerts control by releasing special chemical substances into the blood called hormones
 - Hormones affect other endocrine glands or body systems
- Ductless glands
- Secrete hormones directly into bloodstream
 - Hormones are quickly distributed by bloodstream throughout the body

Hormones

- Chemicals produced by endocrine glands
- Act on target organs elsewhere in body
- Control/coordinate widespread processes:
 - Homeostasis
 - Reproduction
 - Growth & Development
 - Metabolism
 - Response to stress
 - Overlaps with the Sympathetic Nervous System

Hormones

- Hormones are classified as:
 - Proteins
 - Polypeptides (amino acid derivatives)
 - Lipids (fatty acid derivatives or steroids)
Hormones
- Amount of hormone reaching target tissue directly correlates with concentration of hormone in blood.
 - **Constant level hormones**
 - Thyroid hormones
 - **Variable level hormones**
 - Epinephrine (adrenaline) release
 - **Cyclic level hormones**
 - Reproductive hormones
 - Diurnal/Happening during the day

The Endocrine System
- Consists of several glands located in various parts of the body
- **Specific Glands**
 - Hypothalamus
 - Pituitary
 - Thyroid
 - Parathyroid
 - Adrenal
 - Kidneys
 - Pancreatic Islets
 - Ovaries
 - Testes

Pituitary Gland
- Small gland located on stalk hanging from base of brain –
- “The Master Gland”
 - Primary function is to control other glands.
 - Produces many hormones.
 - Secretion is controlled by hypothalamus in base of brain.

Pituitary Gland
- Two areas
 - Anterior Pituitary
 - Posterior Pituitary
- Structurally, functionally different

Pituitary Gland
- Anterior Pituitary
 - Thyroid-Stimulating Hormone (TSH)
 - stimulates release of hormones from Thyroid
 - thyroxine (T4) and triiodothyronine (T3): stimulate metabolism of all cells, thyroid gland produces 90% of T4 and 10% of T3
 - calcitonin: lowers the amount of calcium in the blood by inhibiting breakdown of bone
 - released when stimulated by TSH or cold
 - abnormal conditions
 - hyperthyroidism: too much TSH release
 - hypothyroidism: too little TSH release
Pituitary Gland

- Anterior Pituitary
 - Growth Hormone (GH)
 - stimulates growth of all organs and increases blood glucose concentration
 - decreases glucose usage
 - increases consumption of fats as an energy source
 - Adreno-Corticotrophic Hormone (ACTH)
 - stimulates the release of adrenal cortex hormones

- FSH
 - stimulates maturation of ova; release of estrogen
 - stimulates testes to grow; produce sperm

- LH
 - females - stimulates ovulation; growth of corpus luteum
 - males - stimulates testes to secrete testosterone

- Prolactin
 - stimulates breast development during pregnancy; milk production after delivery

- Melanocyte Stimulating Hormone (MSH)
 - stimulates synthesis, dispersion of melanin pigment in skin

Pituitary Gland

- Posterior Pituitary
 - Stores, releases two hormones produced in hypothalamus
 - Antidiuretic hormone (ADH)
 - Oxytocin

- ADH
 - Stimulates water retention by kidneys; reabsorb sodium and water
 - Abnormal conditions
 - Undersecretion: diabetes insipidus (“water diabetes”)
 - Oversecretion: Syndrome of Inappropriate Antiuretic Hormone (SIADH)

- Oxytocin
 - Stimulates contraction of uterus at end of pregnancy (Pitocin®); release of milk from breast

Hypothalamus

- Produces several releasing and inhibiting factors that stimulate or inhibit anterior pituitary’s secretion of hormones.
- Produces hormones that are stored in and released from posterior pituitary
Hypothalamus
- Also responsible for:
 - Regulation of water balance
 - Esophageal swallowing
 - Body temperature regulation (shivering)
 - Food/water intake (appetite)
 - Sleep-wake cycle
 - Autonomic functions

Thyroid
- Located below larynx and low in neck
 - Not over the thyroid cartilage
- Thyroxine (T_4) and Triiodothyronine (T_3)
 - Stimulate metabolism of all cells
- Calcitonin
 - Decreases blood calcium concentration by inhibiting breakdown of bone

Parathyrionds
- Located on posterior surface of thyroid
- Frequently damaged during thyroid surgery
- Parathyroid hormone (PTH)
 - Stimulates Ca^{2+} release from bone
 - Promotes intestinal absorption and renal tubular reabsorption of calcium

Parathyroids
- Underactivity
 - Decrease serum Ca^{2+}
 - Hypocalcemic tetany
 - Seizures
 - Laryngospasm

Parathyroids
- Overactivity
 - Increased serum Ca^{2+}
 - Pathological fractures
 - Hypertension
 - Renal stones
 - Altered mental status
 - “Bones, stones, hypertones, abdominal moans”

Thymus Gland
- Located in anterior chest
- Normally absent by ~ age 4
- Promotes development of immune-system cells (T-lymphocytes)
Adrenal Glands

- Small glands located near (ad) the kidneys (renals)
- Consists of:
 - outer cortex
 - inner medulla

- Adrenal Medulla
 - the Adrenal Medulla secretes the catecholamine hormones norepinephrine and epinephrine
 - Epinephrine and Norepinephrine
 - Prolong and intensify the sympathetic nervous system response during stress

- Adrenal Cortex
 - Aldosterone (Mineralocorticoid)
 - Regulates electrolyte (potassium, sodium) and fluid homeostasis
 - Cortisol (Glucocorticoids) (most potent)
 - Antiinflammatory, anti-immunity, and anti-allergy effects.
 - Increases blood glucose concentrations
 - Androgens (Sex Hormones)
 - Stimulate sexual drive in females

- Glucocorticoids
 - accounts for 95% of adrenal cortex hormone production
 - ↑ the level of glucose in the blood
 - Released in response to stress, injury, or serious infection - like the hormones from the adrenal medulla

Ovaries

- Located in the abdominal cavity adjacent to the uterus
- Under the control of LH and FSH from the anterior pituitary
- Produce eggs for reproduction
- Produce hormones
 - estrogen
 - progesterone
 - Functions include sexual development and preparation of the uterus for implantation of the egg
Ovaries
- Estrogen
 - Development of female secondary sexual characteristics
 - Development of endometrium
- Progesterone
 - Promotes conditions required for pregnancy
 - Stabilization of endometrium

Testes
- Located in the scrotum
- Controlled by anterior pituitary hormones FSH and LH
- Produce sperm for reproduction
- Produce testosterone -
 - promotes male growth and masculinization
 - promotes development and maintenance of male sexual characteristics

Pancreas
- Located in retroperitoneal space between duodenum and spleen
- Has both endocrine and exocrine functions
 - Exocrine Pancreas
 - Secretes key digestive enzymes
 - Endocrine Pancreas
 - Alpha Cells - glucagon production
 - Beta Cells - insulin production
 - Delta Cells - somatostatin production

Pancreas
- Exocrine function
 - Secretes
 - amylase
 - lipase

Pancreas
- Alpha Cells
 - Glucagon
 - Raises blood glucose levels
- Beta Cells
 - Insulin
 - Lowers blood glucose levels

Disorders of the Endocrine System
Abnormal Thyroid Function

- **Hypothyroidism**
 - Too little thyroid hormone
- **Hyperthyroidism** (Thyrotoxicosis / Thyroid Storm)
 - Too much thyroid hormone

Thyroid Function Tests

- **Serum Immunoassay**
 - TSH/Sensitivity and Specificity >95%
 - Free Thyroxine 4
 - TSH = Values above 0.4 to 6.15 µg/ml indicate Hypothyroidism
 - Low values indicate Hyperthyroidism

Serum T3 and T4

- Measurement of total T3 or T4 includes protein bound and free hormone levels that occur in response to TSH secretion

T3 Resin Uptake Test

- Indirect measure of unsaturated TBG
- Determines the amount of thyroid hormone bound to TBG and the number of available binding sites
- Provides an index to identify amount of thyroid hormone present in circulation

Radioactive Iodine Uptake

- Test measures the rate of iodine uptake by the thyroid gland
- Tracer dose of Iodine-123

Hypothyroidism

- Thyroid hormone deficiency causing a decrease in the basal metabolic rate
 - Person is “slowed down”
- **Causes of Hypothyroidism:**
 - **Primary Causes**
 - Defective hormone synthesis, iodine deficiency, congenital defects or loss of thyroid tissue after treatment of hyperthyroidism
 - **Secondary Causes (Less common)**
 - Insufficient stimulation of the normal gland, causing TSH deficiency
Hypothyroid Conditions

- Primary hypothyroidism
 - Acute thyroiditis
 - Subacute thyroiditis
 - Autoimmune thyroiditis (Hashimoto disease, chronic lymphocytic thyroiditis)

Congenital Hypothyroidism

- Occurs in infants as a result of absent thyroid tissue, and hereditary defects in thyroid hormone synthesis
- Thyroid hormone is essential for embryonic growth especially brain tissue
- Clinical manifestations of hypothyroidism may not be evident until after 4 months of age.

Continued

- Hypothyroidism is difficult to identify at birth
- Suggestive signs include
 - High birth weight, hypothermia, delay in passing meconium, and neonatal jaundice are suggestive signs
 - Cord blood can be examined in the first days of life for T4 and TSH levels.

Clinical Manifestations

- Confusion, drowsiness, coma
- Cold intolerant
- Hypotension, Bradycardia
- Muscle weakness
- Decreased respirations
- Weight gain, Constipation
- Non-pitting peripheral edema
- Depression
- Facial edema, loss of hair
- Dry, coarse skin

Hypothyroidism

- Myxedema Coma
 - Severe hypothyroidism that can be fatal
- Management of Myxedema Coma
 - Support oxygenation, ventilation
 - IV fluids
 - Later
 - Levothyroxine (Synthroid®)

Hyperthyroidism

- Excessive levels of thyroid levels cause hypermetabolic state
 - Person is “sped up”.
- Causes of Hyperthyroidism
 - Overmedication with levothyroxine (Synthroid®)
 - Fad diets
 - Goiter (enlarged, hyperactive thyroid gland)
 - Graves Disease
Clinical Manifestations
- Nervousness, irritable, tremors, paranoid
- Warm, flushed skin
- Heat intolerant
- Tachycardia - High output CHF
- Hypertension
- Tachypnea
- Diarrhea
- Weight loss
- Exophthalmos
- Goiter

Hyperthyroidism
- Medical Management
 - Airway/Ventilation/Oxygen
 - ECG monitor
 - IV access - Cautious IV fluids/Acetaminophen
 - Beta-blockers/Anxiety Medications
 - Tapazole
 - PTU (propylthiouracil)
 - Usually short-term use prior to more definitive treatment
 - Radioactive Iodine Therapy

Thyroid Storm/Thyrotoxicosis
- Severe form of hyperthyroidism that can be fatal
 - Acute life-threatening hyperthyroidism
- Cause
 - Increased physiological stress in hyperthyroid patients

Thyroid Storm/Thyrotoxicosis
- Severe tachycardia
- Heart Failure
- Dysrhythmias
- Shock
- Hyperthermia
- Abdominal pain
- Restlessness, Agitation, Delirium, Coma

Thyroid Storm/Thyrotoxicosis
- Management
 - Airway/Ventilation/Oxygen
 - ECG monitor
 - IV access - Cautious IV fluids
 - Control hyperthermia
 - Active cooling
 - Acetaminophen
 - Inderal (beta blockers)
 - Consider benzodiazepines for anxiety
 - Propylthiouracil (PTU)

Thyroid Surgery/Post-Op Care
- Check dressings for bleeding
- Complaints of sensation of pressure or fullness on incision site can indicate bleeding
- Difficulty in respirations occurs in result of edema of glottis, hematoma, or injury to laryngeal nerve
Hyperparathyroidism
- Overproduction of parathyroid hormone
- Half of the patients do not have symptoms
- Secondary hyperparathyroidism
 - Chronic Renal Failure

Clinical Manifestations
- Apathy
- Fatigue
- Muscle weakness
- N/V
- Constipation
- Cardiac Dysrhythmias
- Irritability/Neurosis

Diagnostic Findings
- Elevated Calcium levels
- Elevated Parahormone levels
- Radioimmunoassays sensitive
- Bone Changes

Medical Management
- Hydration Therapy
- Mobility
- Diet and Medications
- Surgery

Hypoparathyroidism
- Inadequate secretion of parathyroid hormone
- Surgical removal of parathyroid gland tissue

Clinical Manifestations
- Tetany-muscle hypertonia, tremor and spasmodic or uncoordinated contractions that occur with or without efforts to make voluntary movements
Assessment/Diagnostic Findings

- Trousseau’s sign
- Chvostek’s sign
- Calcium levels lower than 5mg/dl

Medical Management

- Raise serum calcium to 9-10mg/dl
- Calcium gluconate
- Pentobarbital
- Parenteral Parahormone
- Tracheostomy/Mechanical Vent.

Abnormal Adrenal Function

- Hyperadrenalism
 - Excess activity of the adrenal gland
 - Cushing’s Syndrome & Disease
 - Pheochromocytoma
- Hypoadrenalism (adrenal insufficiency)
 - Inadequate activity of the adrenal gland
 - Addison’s disease

Hyperadrenalism

- Primary Aldosteronism
 - Excessive secretion of aldosterone by adrenal cortex
 - Increased Na+/H2O
 - Presentation
 - headache
 - nocturia, polyuria
 - fatigue
 - hypertension, hypervolemia
 - potassium depletion

Hyperadrenalism

- Adrenogenital syndrome
 - “Bearded Lady”
 - Group of disorders caused by adrenocortical hyperplasia or malignant tumors
 - Excessive secretion of adrenocortical steroids especially those with androgenic or estrogenic effects
 - Characterized by
 - masculinization of women
 - feminization of men
 - premature sexual development of children

Hyperadrenalism

- Cushing’s Syndrome
 - Results from increased adrenocortical secretion of cortisol
 - Causes include:
 - ACTH-secreting tumor of the pituitary (Cushing’s disease)
 - excess secretion of ACTH by a neoplasm within the adrenal cortex
 - excess secretion of ACTH by a malignant growth outside the adrenal gland
 - excessive or prolonged administration of steroids
Hyperadrenalism

- **Cushing’s Syndrome**
 - Characterized by:
 - truncal obesity
 - moon face
 - buffalo hump
 - acne, hirsutism
 - abdominal striae
 - hypertension
 - psychiatric disturbances
 - osteoporosis
 - amenorrhea

- **Cushing’s Disease**
 - Too much adrenal hormone production
 - adrenal hyperplasia caused by an ACTH secreting adenoma of the pituitary
 - “Cushingoid features”
 - striae on extremities or abdomen
 - moon face
 - buffalo hump
 - weight gain with truncal obesity
 - personality changes, irritable

- **Management**
 - Surgery/Radiation if indicated
 - Supportive care
 - Assess for cardiovascular event requiring treatment
 - severe hypertension
 - myocardial ischemia

Hyperadrenalism

- **Pheochromocytoma**
 - Catecholamine secreting tumor of adrenal medulla
 - Presentation
 - Anxiety
 - Pallor, diaphoresis
 - Hypertension – BP 250/150
 - Tachycardia, Palpitations
 - Dyspnea
 - Hyperglycemia

- **Management**
 - Measurements of urine and plasma catecholamines
 - Calm/Reassure
 - Assess blood glucose
 - Consider beta blocking agent - Labetalol
 - Consider benzodiazepines

Hypoadrenalism

- **Adrenal Insufficiency**
 - decrease production of glucocorticoids, mineralcorticoids and androgens

- **Causes**
 - Primary adrenal failure (Addison’s Disease)
 - Infection (TB, fungal, Meningococcal)
 - Autoimmune destruction
 - AIDS
 - Prolonged steroid use
Hypoadrenalism

- Addison’s
 - Hypotension, Shock (Addison’s Crisis)
 - Hyponatremia, Hyperkalemia
 - Progressive Muscle weakness
 - Progressive weight loss and anorexia
 - Skin hyperpigmentation
 - areas exposed to sun, pressure points, joints and creases
 - Arrhythmias
 - Hypoglycemia
 - N/V/D
- Immediate TX is directed toward shock
 - VS/ECG monitor
 - IV fluids
 - Assess blood glucose - D50 if hypoglycemic
 - Steroids
 - hydrocortisone or dexamethasone
 - florinef (mineralcorticoid)
 - Vasopressors if unresponsive to IV fluids

Diabetes Mellitus

- Chronic metabolic disease
- One of the most common diseases in North America
 - Affects 5% of USA population (12 million people)
- Results in
 - insulin secretion by the Beta (β) cells of the islets of Langerhans in the pancreas, AND/OR
 - Defects in insulin receptors on cell membranes leading to cellular resistance to insulin
- Leads to an ↑ risk for significant cardiovascular, renal and ophthalmic disease

Regulation of Glucose

- Dietary Intake
 - Components of food:
 - Carbohydrates
 - Fats
 - Proteins
 - Vitamins
 - Minerals
- The other 3 major food sources for glucose are:
 - carbohydrates
 - proteins
 - fats
- Most sugars in the human diet are complex and must be broken down into simple sugars: glucose, galactose and fructose - before use
Regulation of Glucose

- Carbohydrates
 - Found in sugary, starchy foods
 - Ready source of near-instant energy
 - If not “burned” immediately by body, stored in liver and skeletal muscle as glycogen (short-term energy) or as fat (long-term energy needs)
 - After normal meal, approximately 60% of the glucose is stored in liver as glycogen

- Fats
 - Broken down into fatty acids and glycerol by enzymes
 - Excess fat stored in liver or in fat cells (under the skin)

- Pancreatic hormones are required to regulate blood glucose level
 - Glucagon released by Alpha (α) cells
 - Insulin released by Beta Cells (β)
 - Somatostatin released by Delta Cells (δ)

- Alpha (α) cells release glucagon to control blood glucose level
 - When blood glucose levels fall, α cells ↑ the amount of glucagon in the blood
 - The surge of glucagon stimulates liver to release glucose stores by the breakdown of glycogen into glucose (glycogenolysis)
 - Also, glucagon stimulates the liver to produce glucose (gluconeogenesis)

- Beta Cells (β) release insulin (antagonistic to glucagon) to control blood glucose level
 - Insulin ↑ the rate at which various body cells take up glucose ⇒ insulin lowers the blood glucose level
 - Promotes glycogenesis - storage of glycogen in the liver
 - Insulin is rapidly broken down by the liver and must be secreted constantly

- Delta Cells (δ) produce somatostatin, which inhibits both glucagon and insulin
 - Inhibits insulin and glucagon secretion by the pancreas
 - Inhibits digestion by inhibiting secretion of digestive enzymes
 - Inhibits gastric motility
 - Inhibits absorption of glucose in the intestine
Regulation of Glucose

- Breakdown of sugars carried out by enzymes in the GI system
 - As simple sugars, they are absorbed from the GI system into the body
- To be converted into energy, glucose must first be transmitted through the cell membrane
 - Glucose molecule is too large and does not readily diffuse

Regulation of Glucose

- Glucose must pass into the cell by binding to a special carrier protein on the cell’s surface.
 - Facilitated diffusion - carrier protein binds with the glucose and carries it into the cell.
- The rate at which glucose can enter the cell is dependent upon insulin levels
 - Insulin serves as the messenger - travels via blood to target tissues
 - Combines with specific insulin receptors on the surface of the cell membrane

Regulation of Glucose

- Body strives to maintain blood glucose between 60 mg/dl and 120 mg/dl.
- Glucose
 - Brain is the biggest user of glucose in the body
 - Sole energy source for brain
 - Brain does not require insulin to utilize glucose

Regulation of Glucose

- Glucagon
 - Released in response to:
 - Sympathetic stimulation
 - Decreasing blood glucose concentration
 - Acts primarily on liver to increase rate of glycogen breakdown
 - Increasing blood glucose levels have inhibitory effect on glucagon secretion

Regulation of Glucose

- Insulin
 - Released in response to:
 - Increasing blood glucose concentration
 - Parasympathetic innervation
 - Acts on cell membranes to increase glucose uptake from blood stream
 - Promotes facilitated diffusion of glucose into cells
Diabetes Mellitus

- 2 Types historically based on age of onset (NOT insulin vs. non-insulin)
 - Type I
 - juvenile onset
 - insulin dependent
 - Type II
 - historically adult onset
 - now some morbidly obese children are developing Type II diabetes
 - non-insulin dependent
 - may progress to insulin dependency

Types of Diabetes Mellitus

- Type I
- Type II
- Secondary
- Gestational

Pathophysiology of Type I Diabetes Mellitus

- Characterized by inadequate or absent production of insulin by pancreas
- Usually presents by age 25
- Strong genetic component
- Autoimmune features
 - body destroys own insulin-producing cells in pancreas
 - may follow severe viral illness or injury
- Requires lifelong treatment with insulin replacement

Pathophysiology of Type II Diabetes Mellitus

- Pancreas continues to produce some insulin however disease results from combination of:
 - Relative insulin deficiency
 - Decreased sensitivity of insulin receptors
- Onset usually after age 25 in overweight adults
 - Some morbidly obese children develop Type II diabetes
- Familial component
- Usually controlled with diet, weight loss, oral hypoglycemic agents
 - Insulin may be needed at some point in life

Secondary Diabetes Mellitus

- Pre-existing condition affects pancreas
 - Pancreatitis
 - Trauma

Gestational Diabetes Mellitus

- Occurs during pregnancy
 - Usually resolves after delivery
- Occurs rarely in non-pregnant women on BCPs
- Increased estrogen, progesterone antagonize insulin
Presentation of New Onset Diabetes Mellitus

- 3 Ps
 - Polyuria
 - Polydipsia
 - Polyphagia
- Blurred vision, dizziness, altered mental status
- Rapid weight loss
- Warm dry skin,
- Weakness, Tachycardia, Dehydration

Subject Data

- Onset and duration
- Presence of polytriad
- Associated symptoms
- Past medical history
- Family History

Objective Data

- Physical Examination
- Laboratory Data

Long Term Treatment of Diabetes Mellitus

- Diet regulation
 - e.g. 1400 calorie ADA diet
- Exercise
 - increase patient’s glucose metabolism
- Oral hypoglycemic agents
 - Sulfonylureas
- Insulin
 - Historically produced from pigs (porcine insulin)
 - Currently genetic engineering has lead to human insulin (Humulin)

Long Term Treatment of Diabetes Mellitus

- Insulin
 - Available in various forms distinguished on onset and duration of action
 - Onset
 - rapid (Regular, Semilente, Novolin 70/30)
 - intermediate (Novolin N, Lente)
 - slow (Ultralente)
 - Duration
 - short, 5-7 hrs (Regular)
 - intermediate, 18-24 hrs (Semilente, Novolin N, Lente, NPH)
 - long-acting, 24 - 36+ hrs (Novolin 70/30, Ultralente)

Long Term Treatment of Diabetes Mellitus

- Insulin
 - Must be given by injection as insulin is protein which would be digested if given orally
 - extremely compliant patients may use an insulin pump which provides a continuous dose
 - current research studying inhaled insulin form
Long Term Treatment of Diabetes Mellitus

- Oral Hypoglycemic Agents
 - Stimulate the release of insulin from the pancreas, thus patient must still have intact beta cells in the pancreas.
 - Common agents include:
 - Glucotrol® (glipizide)
 - Micronase® or Diabeta® (glyburide)
 - Glucophage® (metformin) [Not a sulfonylurea]

Emergencies Associated Blood Glucose Level

- Hyperglycemia
 - Diabetic Ketoacidosis (DKA)
 - Hyperglycemic Hyperosmolar Nonketotic Coma (HHNC)
- Hypoglycemia
 - “Insulin Shock”

Hyperglycemia

- Defined as blood glucose > 200 mg/dl
- Causes
 - Failure to take medication (insulin)
 - Increased dietary intake
 - Stress (surgery, MI, CVA, trauma)
 - Fever
 - Infection
 - Pregnancy (gestational diabetes)

Diabetic Ketoacidosis (DKA)

- Occurs in Type I diabetics (insulin dependency)
- Usually associated with blood glucose level in the range of 200 - 600 mg/dl
- No insulin availability results in ketoacidosis

Diabetic Ketoacidosis (DKA)

- Pathophysiology
 - Results from absence of insulin
 - Prevents glucose from entering the cells
 - Leads to glucose accumulation in the blood
 - Cells become starved for glucose and begin to use other energy sources (primarily fats)
 - Fat metabolism generates fatty acids
 - Further metabolized into ketoacids (ketone bodies)
Diabetic Ketoacidosis (DKA)

- **Pathophysiology (cont)**
 - Blood sugar rises above renal threshold for reabsorption (blood glucose > 180 mg/dl)
 - glucose “spills” into the urine
 - Loss of glucose in urine causes osmotic diuresis
 - Results in
 - dehydration
 - acidosis
 - electrolyte imbalances (especially K+)

- **Presentation**
 - Gradual onset with progression
 - Warm, pink, dry skin
 - Dry mucous membranes (dehydrated)
 - Tachycardia, weak peripheral pulses
 - Weight loss
 - Polyuria, polydipsia
 - Abdominal pain with nausea/vomiting
 - Altered mental status
 - Kussmaul respirations with acetone (fruity) odor

Diabetic Ketoacidosis

- Inadequate insulin
- Increased Blood Sugar
- Cells Can’t Burn Glucose
- Polyphagia
- Ketone Bodies
- Fruity Breath
- Osmotic Diuresis
- Polyuria
- Polydipsia
- Metabolic Acidosis
- Kussmaul Breathing

Management of DKA

- Airway/Ventilation/Oxygen NRB mask
- Assess blood glucose level & ECG
- IV access, large bore NS
 - normal saline bolus and reassess
 - often requires several liters
- Assess for underlying cause of DKA
- Transport

Hyperosmolar Hyperglycemic Nonketotic Coma (HHNC)

- Usually occurs in type II diabetics
- Typically very high blood sugar (>600 mg/dl)
- Some insulin available
- Higher mortality than DKA

Pathophysiology

- Some minimal insulin production
 - enough insulin available to allow glucose to enter the cells and prevent ketogenesis
 - not enough to decrease gluconeogenesis by liver
 - no ketosis
- Extreme hyperglycemia produces hyperosmolar state causing
 - diuresis
 - severe dehydration
 - electrolyte disturbances

Hyperosmolar Hyperglycemic Nonketotic Coma (HHNC)

- Pathophysiology
 - Some minimal insulin production
 - enough insulin available to allow glucose to enter the cells and prevent ketogenesis
 - not enough to decrease gluconeogenesis by liver
 - no ketosis
- Extreme hyperglycemia produces hyperosmolar state causing
 - diuresis
 - severe dehydration
 - electrolyte disturbances
Hyperosmolar Hyperglycemic Nonketotic Coma (HHNC)

- Inadequate insulin
- Increased Blood Sugar
- Osmotic Diuresis
- Polyuria
- Volume Depletion
- Shock
- Polydipsia

Presentation
- Same as DKA but with greater severity
 - Higher blood glucose level
 - Non-insulin dependent diabetes
 - Greater degree of dehydration

Management of HHNC
- Secure airway and assess ventilation
 - Consider need to assist ventilation
 - Consider need to intubate
- High concentration oxygen
- Assess blood glucose level & ECG
- IV access, large bore NS
 - normal saline bolus and reassess
 - often requires several liters
- Assess for underlying cause of HHNC
- Transport

Further Management of Hyperglycemia
- Insulin (regular)
- Correct hyperglycemia
- Correction of acid/base imbalances
 - Bicarbonate (severe cases documented by ABG)
- Normalization of electrolyte balance
 - DKA may result in hyperkalemia 2+ to acidosis
 - H^+ shifts intracellularly, K^+ moves to extracellular space
 - Urinary K^+ losses may lead to hypokalemia once therapy is started

Hypoglycemia
- True hypoglycemia defined as blood sugar < 60 mg/dl
- ALL hypoglycemia is NOT caused by diabetes
 - Can occur in non-diabetic patients
 - thin young females
 - alcoholics with liver disease
 - alcohol consumption on empty stomach will block glucose synthesis in liver (gluconeogenesis)
- Hypoglycemia causes impaired functioning of brain which relies on constant supply of glucose

Causes of hypoglycemia in diabetics
- Too much insulin
- Too much oral hypoglycemic agent
 - Long half-life requires hospitalization
- Decreased dietary intake (took insulin and missed meal)
- Vigorous physical activity

Pathophysiology
- Inadequate blood glucose available to brain and other cells resulting from one of the above causes
Hypoglycemia

- **Presentation**
 - Hunger (initially), Headache
 - Weakness, Incoordination (mimics a stroke)
 - Confusion, Unusual behavior
 - may appear intoxicated
 - Seizures
 - Coma
 - Weak, rapid pulse
 - Cold, clammy skin
 - Nervousness, trembling, irritability

Hypoglycemia: Pathophysiology

- Blood Glucose Falls
- Brain Lacks Glucose
- SNS Response
 - Anxiety
 - Pallor
 - Tachycardia
 - Diaphoresis
 - Nausea
 - Dilated Pupils
 - Altered LOC
 - Seizures
 - Headache
 - Dizziness
 - Bizarre Behavior
 - Weakness
 - Anxiety
 - Pallor
 - Tachycardia
 - Diaphoresis
 - Nausea
 - Dilated Pupils

Management of Hypoglycemia

- Secure airway manually
 - suction prn
 - Ventilate prn
- High concentration oxygen
- Vascular access
 - Large bore IV catheter
 - Saline lock, D$_{50}$W or NS
 - Large proximal vein preferred
- Assess blood glucose level

Management of Hypoglycemia

- Oral glucose
 - ONLY if intact gag reflex, awake & able to sit up
 - 15gm-30gm of packaged glucose, or
 - May use sugar-containing drink or food
 - Oral route often slower
- Intravenous glucose
 - Adult: Dextrose 50% (D$_{50}$) 25gms IV in patent, free-flowing vein, may repeat
 - Children: Dextrose 25% (D$_{25}$) @ 2 - 4 cc/kg (0.5 - 1 gm/kg) [Infants - may choose Dextrose 10% @ 0.5 - 1 gm/kg or 5 - 10 cc/kg]

Beta Blockers may mask symptoms by inhibiting sympathetic response

Management of Hypoglycemia

- Glucagon
 - Used if unable to obtain IV access.
 - 1 mg IM
 - Requires glycogen stores
 - Slower onset of action than IV route

What persons are likely to have inadequate glycogen stores?
Management of Hypoglycemia
- Have patient eat high-carbohydrate meal
- Transport?
 - Patient Refusal Policy
 - Contact medical control
 - Leave only with responsible family/friend for 6 hours
 - Must educate family/friend to hypoglycemic signs/symptoms
 - Advise to contact personal physician
 - Transport
 - Hypoglycemic patients on oral agents (long half life)
 - Unknown, atypical or untreated cause of hypoglycemia

Long-term Complications of Diabetes Mellitus
- Blindness
 - Retinal hemorrhages
- Renal Disease
- Peripheral Neuropathy
 - Numbness in “stocking glove” distribution (hands and feet)
- Heart Disease and Stroke
 - Chronic state of Hyperglycemia leads to early atherosclerosis
- Complications in Pregnancy
 - Diabetic retinopathy/blindness
 - Gangrene

Long-term Complications of Diabetes Mellitus
- Diffuse Atherosclerosis
 - AMI
 - CVA
 - PVD
 - Hypertension
 - Renal failure
 - Diabetic retinopathy/blindness
 - Gangrene

Diabetes in Pregnancy
- Early pregnancy (<24 weeks)
 - Rapid embryo growth
 - Decrease in maternal blood glucose
 - Episodes of hypoglycemia
Diabetes in Pregnancy

- Late pregnancy (>24 weeks)
 - Increased resistance to insulin effects
 - Increased blood glucose
 - Ketoacidosis

- Increased maternal risk for:
 - Pregnancy-induced hypertension
 - Infections
 - Vaginal
 - Urinary tract

- Increased fetal risk for:
 - High birth weight
 - Hypoglycemia
 - Liver dysfunction-hyperbilirubinemia
 - Hypocalcemia

Assessment of the Diabetic Patient

- History and Physical Exam includes
 - Look for insulin syringes, medical alert tag, glucometer, or insulin (usually kept in refrigerator)
 - Last meal and last insulin dose
 - Missed med or missed meal?
 - Signs of infection
 - Foot cellulitis / ulcers
 - Recent illness or physiologic stressors

- Capillary vs. venous blood sample
 - Depends on glucometer model
 - Usually capillary preferred

- Dextrostick vs Glucometer
 - Dextrostick - colorimetric assessment of blood provides glucose estimate
 - Glucometer - quantitative glucose measurement

- Neonatal blood
 - Many glucometers are not accurate for neonates

Blood Glucose Assessment

Assessment of the Diabetic Patient

- Maintain high-degree of suspicion
- Assess blood glucose level in all patients with
 - seizure, neurologic S/S, altered mental status
 - vague history or chief complaint
- Blood glucose assessment IS NOT necessary in all patients with diabetes mellitus!!