Chapter 34

Drugs for Bacterial Infections

Pathogens

- Organisms that can cause disease
- Must bypass the body's defenses
 - Bacteria, viruses
 - Fungi; intracellular organisms
 - Multicellular animals

Pathogenicity and Virulence

- Pathogenicity: ability of organism to cause infection
- Virulence: measure of disease-producing potential
 - Highly virulent pathogen can cause disease when present in small numbers

Media Directory

Slide 43 Penicillin Animation
Slide 51 Ciprofloxacin Animation

Pathogens (continued)

- Cause disease in two ways
 - Divide rapidly to overcome body defenses
 - Disrupt normal cell function
- Secrete toxins
 - Disrupt normal cell function

Methods of Describing Bacteria

- Basic Shapes
 - Bacilli—rod shape
 - Cocci—spherical shape
 - Spirilla—spiral shape
Methods of Describing Bacteria (continued)

- Ability to use oxygen
 - Aerobic—with O₂
 - Anaerobic—without O₂
- Staining Characteristics
 - Gram positive
 - Gram negative

Anti-infective Drugs

- Known as antibacterial, antimicrobial, antibiotic
- Classified by
 - Chemical structures (e.g., aminoglycoside, fluoroquinolone)
 - Mechanism of action (e.g., cell-wall inhibitor, folic-acid inhibitor)

Actions of Anti-infective Drugs

- Affect target organism’s structure, metabolism, or life cycle
- Goal is to eliminate pathogen
 - Bactericidal—kill bacteria
 - Bacteriostatic—slow growth of bacteria

Acquired Resistance

- Occurs when pathogen acquires gene for bacterial resistance
 - Through mutation
 - Antibiotics destroy sensitive bacteria
 - Insensitive (mutated) bacteria remain
 - Mutations random, occur during cell division
 - Mutated bacteria multiply
 - Antibiotics do not create mutations
 - By another microbe
 - Bacteria passed to others
Widespread Use of Antibiotics

- Resistance not caused by but is worsened by overprescription of antibiotics
 - Results in loss of antibiotic effectiveness
- Only prescribe when necessary
- Long-time use increases resistant strains

(continued)

- Nosocomial infections often resistant
- Prophylactic use sometimes appropriate
- Nurse should instruct client to take full dose

Role of the Nurse

- Monitor client’s condition
- Provide client education
- Obtain medical, surgical, and drug history
- Assess lifestyle and dietary habits
- Obtain description of symptomology and current therapies

(continued)

- After parenteral administration, observe closely for possible allergic reactions
- Monitor for superinfections
 - Replace natural colon flora with probiotic supplements or cultured dairy products

Figure 34.2 Acquired resistance.
Role of the Nurse (continued)

- Teach clients to
 - Wear medic-alert bracelets if allergic to antibiotics
 - Report symptoms of allergic reaction
 - Not stop taking drug until complete prescription has been taken

Drug Therapy with Penicillins

- Assess previous drug reactions to penicillin
- Avoid cephalosporins if client has history of severe penicillin allergy
- Monitor for hyperkalemia and hypernatremia
- Monitor cardiac status, including ECG changes

Cephalosporin Therapy

- Assess for presence or history of bleeding disorders
 - Cephalosporins may reduce prothrombin levels
- Assess renal and hepatic function
- Avoid alcohol
 - Some cephalosporins cause disulfiram (Antabuse)-like reaction with alcohol

Tetracycline Therapy

- Contraindicated for clients who are pregnant or lactating
 - Effect on linear skeletal growth of fetus and child
- Contraindicated in children less than 8 years of age
 - Permanent mottling and discoloration of teeth

Tetracycline Therapy (continued)

- Photosensitivity may result
- Do not take with milk products, iron supplements, magnesium-containing laxatives, or antacids
Macrolide Therapy

- Assess for presence of respiratory infection
- Examine client for history of cardiac disorders
- Monitor hepatic enzymes with certain macrolides, such as erythromycin estolate
- Multiple drug-drug interactions occur with macrolides

Aminoglycoside Therapy

- Monitor for ototoxicity and nephrotoxicity
- Hearing loss may occur after therapy has been completed
- Neuromuscular function may also be impaired
- Increase fluid intake, unless otherwise contraindicated, to promote excretion

Fluoroquinolone Therapy

- Monitor white blood count
- Monitor clients with liver and renal dysfunction
- Teach that drugs may cause dizziness and lightheadedness
 - Advise against driving or performing hazardous tasks during drug therapy

Fluoroquinolone Therapy (continued)

- Norfloxacin (Noroxin) may cause photophobia
- Teach that drug may affect tendons, especially in children

Sulfonamide Therapy

- Assess for anemia or other hematological disorders
- Assess renal function; sulfonamides may increase risk for crystalluria

Sulfonamide Therapy

- Contraindicated in clients with history of hypersensitivity to sulfonamides
 - Can induce skin abnormality called Stevens-Johnson syndrome
- Teach client how to decrease effects of photosensitivity
Antituberculosis Therapy

• Contraindicated for clients with history of alcohol abuse, AIDS, liver disease, or kidney disease
• Use caution for certain clients
 – Those with renal dysfunction
 – Those who are pregnant or lactating
 – Those with history of convulsive disorders

Antituberculosis Therapy (continued)

• Assess for gouty arthritis
• Some antituberculosis drugs interact with oral contraceptives
 – Use alternate form of birth control.
• If taking isoniazid, avoid foods containing tyramine

Selection of an Antibiotic

• Careful selection of correct antibiotic essential
 – Use of culture and sensitivity testing
 – For effective pharmacotherapy; to limit adverse effects

Selection of an Antibiotic (continued)

• Broad-spectrum antibiotics
 – Effective for wide variety of bacteria
• Narrow-spectrum antibiotics
 – Effective for narrow group of bacteria

Culture and Sensitivity Testing

• Examination of specimen for microorganisms
• Grown in lab and identified
• Tested for sensitivity to different antibiotics

Culture and Sensitivity Testing (continued)

• Bacteria may take several days to identify
• Viruses may take several weeks to identify
• Broad-spectrum antibiotics may be started before lab culture completed
Multidrug Therapy

- Affected by antagonism—combining two drugs may decrease efficacy of each
- Use of multiple antibiotics increases risk of resistance.
- Multidrug therapy can be used
 - When multi-organisms cause infection
 - For treatment of tuberculosis
 - For treatment of HIV

Superinfections

- Occur when too many host flora are killed by an antibiotic
 - Host flora prevent growth of pathogenic organisms

Superinfections

- Pathogenic microorganisms have chance to multiply
 - Opportunistic—take advantage of suppressed immune system
 - Signs and symptoms include diarrhea, bladder pain, painful urination, or abnormal vaginal discharge

Host Factors Influence Choice of Antibiotics

- Immune system status
- Local conditions at infection site
- Allergic reactions

Host Factors Influence Choice of Antibiotics (continued)

- Age
- Pregnancy status
- Genetics

Penicillin

- Prototype drug: penicillin G (Pentids)
- Mechanism of action: to kill bacteria by disrupting their cell walls
- Primary use: as drug of choice against streptococci, pneumococci, and staphylococci organisms that do not produce penicillinase
 - Also medication of choice for gonorrhea and syphilis
- Adverse effects: diarrhea, nausea, vomiting, superinfections, anaphylaxis
Penicillin Animation

Cephalosporin

- **Prototype drug:** cefotaxime (Claforan)
- **Mechanism of action:** to act with broad-spectrum activity against gram-negative organisms
- **Primary use:** for serious infections of lower respiratory tract, central nervous system, genitourinary system, bones, blood, and joints
- **Adverse effects:** hypersensitivity, anaphylaxis, diarrhea, vomiting, nausea, pain at injection site

Tetracycline

- **Prototype drug:** tetracycline HCL (Achromycin, others)
- **Mechanism of action:** effective against broad range of gram-positive and -negative organisms
- **Primary use:** chlamydiae, rickettsiae, and mycoplasma
- **Adverse effects:** superinfections, nausea, vomiting, epigastric burning, diarrhea, discoloration of teeth, photosensitivity

Macrolide

- **Prototype drug:** erythromycin (E-Mycin, Erythrocin)
- **Mechanism of action:** to act as spectrum similar to that of penicillins
 - Also to be effective against gram-positive bacteria
- **Primary use:** for *Bordetella pertussis* (whooping cough) and *Corynebacterium diphtheriae*, most gram-positive bacteria

Macrolide (continued)

- **Adverse effects:** nausea, abdominal cramping, and vomiting
 - Most severe is hepatotoxicity.

Aminoglycoside

- **Prototype drug:** gentamicin (Garamycin)
- **Mechanism of action:** to act as broad-spectrum, bacteriocidal antibiotic
Aminoglycoside (continued)

- **Primary use:** for serious urinary, respiratory, nervous, or GI infections
 - Often used in combination with other antibiotics
 - Used parenterally or as drops (Genoptic) for eye infections
- **Adverse effects:** ototoxicity and nephrotoxicity

Fluoroquinolone

- **Prototype drug:** ciprofloxacin (Cipro)
- **Mechanism of action:** to inhibit bacterial DNA gyrase
 - Affects bacterial replication and DNA repair
- **Primary use:** for respiratory infections, bone and joint infections, GI infections, ophthalmic infections, sinusitis, and prostatitis
- **Adverse effects:** nausea, vomiting, diarrhea, phototoxicity, headache, dizziness

Ciprofloxacin Animation

- Click here to view an animation on the topic of ciprofloxacin.

Sulfonamide

- **Prototype drug:** trimethoprim-sulfamethoxazole (Bactrim, Septra)
- **Mechanism of action:** to kill bacteria by inhibiting bacterial metabolism of folic acid
- **Primary use:** for urinary tract infections, *Pneumocystis carinii* pneumonia, shigella infections of small bowel, and acute episodes of chronic bronchitis
- **Adverse effects:** skin rashes, nausea, vomiting, agranulocytosis or thrombocytopenia

Miscellaneous

- **Clindamycin (Cleocin):** for oral infections caused by bacteroides
 - Associated with pseudomembranous colitis
 - Metronidazole (Flagyl): used to treat *H. pylori* infections of stomach

Miscellaneous (continued)

- **Vancomycin (Vancocin):** effective for MRSA infections
- **Adverse effects:** ototoxicity, nephrotoxicity, red man syndrome
Miscellaneous—new

- Oxazolidinones: linezolid (Zyvox)—as effective as vancomycin against MRSA
- Cyclic lipopeptides: daptomycin (Cubicin)—used to treat serious skin infections
- Carbapenems: imipenem (Primaxin) have some of the broadest spectrums

Miscellaneous—new

- Carbapenems: imipenem (Primaxin) have some of the broadest spectrums
- Ketolides: telithromycin (Ketek)—used for respiratory infections
- Glycylcyclines: tigecycline (Tygacil)—used for drug-resistant abdominal infections and complicated skin infections

Penicillins

- Most effective against gram-positive bacteria
- Kill bacteria by disrupting cell wall with beta-lactam ring
- Beta-lactamase or penicillinase is enzyme allowing bacteria to be resistant

Penicillins (continued)

- New penicillins are penicillinase-resistant
 - Examples: oxacillin and cloxacillin
- Combination drugs with beta-lactamase inhibitors
 - Examples: clavulanate, sulbactam, tazobactam

Penicillin—Adverse Effects

- One of safest classes of antibiotic
- Allergy most common adverse effect
- If client allergic to penicillin, avoid cephalosporins
 - Possibility of cross-hypersensitivity
Penicillin—Adverse Effects (continued)

• Other adverse effects
 – Skin rash; decreased RBC, WBC, or platelet counts

Cephalosporins

• Similar in structure and function to penicillins
• Have beta-lactam ring; are bacteriocidal
• Widely prescribed anti-infective class
• More than 20 cephalosporins available

Cephalosporins (continued)

• Cross-sensitivity with penicillins (5–10% of population)
• Classified by generations
• Generations of cephalosporins
 – First (oldest): bacteria producing beta-lactamase are resistant
 – Second: more potent, broader spectrum, more resistant to beta-lactamase
 – Third: longer duration of action, even broader spectrum, resistant to beta-lactamase
 – Fourth: effective against organisms that are resistant to earlier generations
 – Third and fourth capable of entering CSF

Tetracyclines

• Some of broadest spectrums of any antibiotic class
• Large number of resistant bacterial strains
• Drugs of choice for only a few diseases
 – Rocky Mountain spotted fever
 – Typhus, cholera, Lyme disease
 – Peptic ulcers caused by H. pylori
 – Chlamydial infections
• Inhibit bacterial protein synthesis with bacteriostatic effect

Tetracyclines—Adverse Effects

• Bind with calcium and iron to decrease absorption by up to 50%
 – Do not take with milk.
• Photosensitivity
• Permanent yellow-brown tooth discoloration in children
• Risk for superinfection is high
• Pregnancy Category D
Macrolides

- Safe alternatives to penicillin
- Effective against most gram-positive and gram-negative bacteria
- Inhibit protein synthesis by binding to bacterial ribosome
- Bacteriostatic at low doses and bacteriocidal at high doses

Macrolides

- Drug of choice for whooping cough, Legionnaire’s disease
 - Also infections caused by streptococcus, H. influenzae, Mycoplasma pneumoniae, chlamydia
- Broad spectrum, so superinfections may occur
- Otherwise, no serious side effects
- No contraindications except previous

Aminoglycosides

- Narrow-spectrum drugs, bacteriocidal
- Reserved for serious systemic infections caused by aerobic gram-negative bacteria
 - E. coli, serrattia, proteus, klebsiella, and pseudomonas
- Inhibit bacterial protein synthesis

Aminoglycosides (continued)

- More toxic than most antibiotics
- Have potential to cause serious adverse effects
 - Ototoxicity, nephrotoxicity, neuromuscular blockade
- Note difference in spelling “mycin” and “micin”—reflects origins of drug

Fluoroquinolones

- Are bacteriocidal and affect DNA synthesis by inhibiting two bacterial enzymes
- All have activity against gram-negative pathogens
- Newer drugs in class have activity against gram-positive microbes.
- Now four generations
 - Used for infections of respiratory system, GI and GU tracts, skin and soft tissue infections

Fluoroquinolones—Adverse Effects

- Do not take with multivitamins or minerals such as calcium, magnesium, iron, or zinc ions
 - Can decrease absorption by up to 90%
- Most serious adverse effects are dysrhythmias and liver failure
Fluoroquinolones—
Adverse Effects (continued)

• CNS disturbances affect 1–8% of clients
• Do not use in children and pregnant or lactating women

Sulfonamides

• Are bacteriostatic and act by inhibiting folic acid
• Are broad spectrum
• Widespread use leads to resistance.
• Used in a combination to treat UTIs
• Also used to treat Pneumocystis carinii and shigella
• Anti-inflammatory properties can help with rheumatoid arthritis and ulcerative colitis

Adverse Effects

• Generally safe
• Serious adverse effects
 – Crystal development in urine, hypersensitivity reactions
 – Nausea, vomiting, potentially fatal blood abnormalities

Miscellaneous Antibacterials

• Some cannot be grouped into classes, or class is too small
• Many miscellaneous drugs have critical importance, and many are new

Tuberculosis

• Caused by Mycobacterium tuberculosis
 – Cell wall resistant to anti-infectives
• Body’s immune response attempts to isolate pathogen by walling it off
• Tuberculosis may remain dormant in walled-off areas called tubercles
• Decreased immune system can give tuberculosis opportunity to become active

Long-Term Therapy

• 6–12 months of drug therapy
 – Needed to reach isolated pathogens in tubercles
• Therapy must be continued even if no symptoms
• Clients with multidrug-resistant infections require therapy for 24 months
Multidrug Therapy

- 2–4 antibiotics administered concurrently
- Different combinations used during course of therapy
 - Necessary because mycobacterium grows slowly and is commonly resistant
 - Therapy initiated with first-choice drugs
 - When resistance develops, second-choice drugs used
 - More toxic
 - Less effective than first-choice drugs

Chemoprophylaxis

- Antituberculosis drugs used to prevent disease in high-risk populations
 - Close contacts and family members of recently infected tuberculosis clients
 - Clients with AIDS
 - Clients who are HIV-positive or are receiving immunosuppressant drugs

Clients Receiving Antibacterial Therapy

- Assessment
 - Obtain complete health history—allergies, drugs, drug interactions
 - Obtain specimens for culture and sensitivity before initiating therapy
 - Perform infection-focused physical examination—vital signs, WBC count, sedimentation rate

Clients Receiving Antibacterial Therapy (continued)

- Nursing diagnoses
 - Infection; risk for injury
 - Deficient knowledge, related to disease process, transmission, and drug therapy
 - Noncompliance, related to therapeutic regimen

Clients Receiving Antibacterial Therapy (continued)

- Planning—client will
 - Report reduction in symptoms related to diagnosis
 - Have negative results for laboratory and diagnostic tests
 - Demonstrate understanding of drug’s action

Clients Receiving Antibacterial Therapy (continued)

- Planning—client will (continued)
 - Report side effects
 - Rash, shortness of breath, swelling
 - Fever, stomatitis, loose stools
 - Vaginal discharge, cough
 - Complete full course of antibiotic therapy and follow-up care
Clients Receiving Antibacterial Therapy (continued)

- Implementation (continued)
 - Determine food and beverage interactions
 - Monitor IV site for signs of tissue irritation, severe pain, extravasation
 - Monitor for side effects, renal function, symptoms of ototoxicity, compliance with antibiotic therapy

- Evaluation—client
 - Reports reduction in symptoms; has improved laboratory results
 - Accurately states drug’s action and side effects
 - Accurately states signs and symptoms to be reported
 - Completes full course of therapy and complies with follow-up care

Clients Receiving Antituberculosis Agents (continued)

- Nursing diagnoses
 - Risk for infection
 - Risk for injury, related to side effects of medication
 - Deficient knowledge, related to drug therapy and spread of infection
 - Noncompliance, related to therapeutic regimen
Clients Receiving Antituberculosis Agents (continued)

- Planning—client will
 - Report reduction in tuberculosis symptoms
 - Have negative results for laboratory and diagnostic tests
 - Demonstrate understanding of drug’s action
 - Report adverse effects
 - Complete full course of therapy and comply with follow-up care

- Implementation
 - Monitor for hepatic and neurologic side effects
 - Collect sputum specimens
 - Monitor for dietary compliance when client is taking isoniazid

- Clients Receiving Antituberculosis Agents (continued)

 - Monitor for side effects specific to antituberculosis drugs
 - Establish infection-control measures
 - Establish therapeutic environment
 - Monitor client’s ability and motivation to comply with therapeutic regimen

- Evaluation—client
 - Reports reduction in tuberculosis symptoms; has negative lab results
 - Accurately states drug’s action and side effects
 - Accurately states signs and symptoms to be reported
 - Completes full course of therapy and complies with follow-up care

Penicillins

Table 34.2 Penicillins

Table 34.2b Penicillins
Cephalosporins

Table 34.3 Cephalosporins

Tetracyclines

Table 34.4 Tetracyclines

Macrolides

Table 34.5 Macrolides

Aminoglycosides

Table 34.6 Aminoglycosides

Fluoroquinolones

Table 34.7 Fluoroquinolones
Sulfonamides

Table 34.8 Sulfonamides

1. **Sulfadiazine**
2. **Sulfaguanidine**
3. **Sulfamerazine**
4. **Sulfamethizole**
5. **Sulfamerazone**
6. **Sulfamethoxazole**
7. **Sulfadimidine**
8. **Sulfamerazine**
9. **Sulfadimethoxine**
10. **Sulfathiazole**

Selected Miscellaneous Antibacterials

Table 34.9 Selected Miscellaneous Antibacterials

1. **Polymyxin B**
2. **Polymyxin E (colistin)**
3. **Tobramycin**
4. **Netilmicin**
5. **Gentamicin**
6. **Amikacin**
7. **Kanamycin**
8. **Spectinomycin**
9. **Tetracyclines**
10. **Nitrofurantoin**
11. **Furosemide**
12. **Hydrochlorothiazide**

Selected Miscellaneous Antibacterials

Table 34.9b Selected Miscellaneous Antibacterials

1. **Polymyxin B**
2. **Polymyxin E (colistin)**
3. **Tobramycin**
4. **Netilmicin**
5. **Gentamicin**
6. **Amikacin**
7. **Kanamycin**
8. **Spectinomycin**
9. **Tetracyclines**
10. **Nitrofurantoin**
11. **Furosemide**
12. **Hydrochlorothiazide**

Selected Miscellaneous Antibacterials

Table 34.9c Selected Miscellaneous Antibacterials

1. **Polymyxin B**
2. **Polymyxin E (colistin)**
3. **Tobramycin**
4. **Netilmicin**
5. **Gentamicin**
6. **Amikacin**
7. **Kanamycin**
8. **Spectinomycin**
9. **Tetracyclines**
10. **Nitrofurantoin**
11. **Furosemide**
12. **Hydrochlorothiazide**

Selected Miscellaneous Antibacterials

Table 34.9d Selected Miscellaneous Antibacterials

1. **Polymyxin B**
2. **Polymyxin E (colistin)**
3. **Tobramycin**
4. **Netilmicin**
5. **Gentamicin**
6. **Amikacin**
7. **Kanamycin**
8. **Spectinomycin**
9. **Tetracyclines**
10. **Nitrofurantoin**
11. **Furosemide**
12. **Hydrochlorothiazide**

Antituberculosis drugs

Table 34.10 Antituberculosis drugs

1. **Isoniazid**
2. **Rifampin**
3. **Ethambutol**
4. **Pyrazinamide**
5. **Streptomycin**
6. **Para-aminosalicylic acid (PAS)**
7. **Isoniazid and rifampin**
8. **Rifampin and isoniazid**
9. **Ethambutol and isoniazid**
10. **Streptomycin and isoniazid**
11. **Para-aminosalicylic acid (PAS) and isoniazid**
12. **Rifampin and pyrazinamide**
| Table 34.10b Antituberculosis drugs |

| Table 34.10c Antituberculosis drugs |